The endocochlear potential alters cochlear micromechanics.
نویسندگان
چکیده
Acoustic stimulation gates mechanically sensitive ion channels in cochlear sensory hair cells. Even in the absence of sound, a fraction of these channels remains open, forming a conductance between hair cells and the adjacent fluid space, scala media. Restoring the lost endogenous polarization of scala media in an in vitro preparation of the whole cochlea depolarizes the hair cell soma. Using both digital laser interferometry and time-resolved confocal imaging, we show that this causes a structural refinement within the organ of Corti that is dependent on the somatic electromotility of the outer hair cells (OHCs). Specifically, the inner part of the reticular lamina up to the second row of OHCs is pulled toward the basilar membrane, whereas the outer part (third row of OHCs and the Hensen's cells) unexpectedly moves in the opposite direction. A similar differentiated response pattern is observed for sound-evoked vibrations: restoration of the endogenous polarization decreases vibrations of the inner part of the reticular lamina and results in up to a 10-fold increase of vibrations of the outer part. We conclude that the endogenous polarization of scala media affects the function of the hearing organ by altering its geometry, mechanical and electrical properties.
منابع مشابه
Corrigendum: A connexin30 mutation rescues hearing and reveals roles for gap junctions in cochlear amplification and micromechanics
Accelerated age-related hearing loss disrupts high-frequency hearing in inbred CD-1 mice. The p.Ala88Val (A88V) mutation in the gene coding for the gap-junction protein connexin30 (Cx30) protects the cochlear basal turn of adult CD-1Cx30A88V/A88V mice from degeneration and rescues hearing. Here we report that the passive compliance of the cochlear partition and active frequency tuning of the ba...
متن کاملA connexin30 mutation rescues hearing and reveals roles for gap junctions in cochlear amplification and micromechanics
Accelerated age-related hearing loss disrupts high-frequency hearing in inbred CD-1 mice. The p.Ala88Val (A88V) mutation in the gene coding for the gap-junction protein connexin30 (Cx30) protects the cochlear basal turn of adult CD-1Cx30A88V/A88V mice from degeneration and rescues hearing. Here we report that the passive compliance of the cochlear partition and active frequency tuning of the ba...
متن کاملSupporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential.
The exquisite sensitivity of the cochlea, which mediates the transduction of sound waves into nerve impulses, depends on the endocochlear potential and requires a highly specialized environment that enables and sustains sensory function. Disturbance of cochlear homeostasis is the cause of many forms of hearing loss including the most frequently occurring syndromic and non-syndromic forms of her...
متن کاملDeafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function.
Generation of a strong electrical potential in the cochlea is uniquely mammalian and may reflect recent evolutionary advances in cellular voltage-dependent amplifiers. This endocochlear potential is hypothesized to dramatically improve hearing sensitivity, a concept that is difficult to explore experimentally, because manipulating cochlear function frequently causes rapid degenerative changes e...
متن کاملAlternating current delivered into the scala media alters sound pressure at the eardrum.
Alternating current delivered into the scala media of the gerbil cochlea modulates the amplitude of a test tone measured near the eardrum. Variations in the electromechanical effect with acoustic stimulus parameters and observed physiological vulnerability suggest that cochlear hair cells are the biophysical origin of the process. Cochlear hair cells have traditionally been thought of as passiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 100 11 شماره
صفحات -
تاریخ انتشار 2011